Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2254012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667522

RESUMO

PROTACs represent an emerging field in medicinal chemistry, which has already led to the development of compounds that reached clinical studies. Posttranslational modifications contribute to the complexity of proteomes, with 2846 disease-associated sites. PROTAC field is very advanced in targeting kinases, while its use for enzymes mediating posttranslational modifications of the basic amino acid residues, started to be developed recently. Therefore, we bring together this less popular class of PROTACs, targeting lysine acetyltransferases/deacetylases, lysine and arginine methyltransferases, ADP-ribosyltransferases, E3 ligases, and ubiquitin-specific proteases. We put special emphasis on structural aspects of PROTAC elements to facilitate the lengthy experimental endeavours directed towards developing PROTACs. We will cover the period from the inception of the field, 2017, to April 2023.


Assuntos
Lisina , Quimera de Direcionamento de Proteólise , Arginina , Ubiquitina-Proteína Ligases , Processamento de Proteína Pós-Traducional
2.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054788

RESUMO

In this study, we present a new selenium derivative, 2'-deoxyguanosine-5'-O-selenophosphate (dGMPSe), synthesized by the oxathiaphospholane method and adapted here for the synthesis of nucleoside selenophosphates. Using biochemical assays (HPLC- and fluorescence-based), we investigated the enzymatic activity of HINT1 towards dGMPSe in comparison with the corresponding thiophosphate nucleoside, i.e., dGMPS. Both substrates showed similar kcat and a small difference in Km, and during the reactions the release of reducing agents such as H2Se and H2S were expected and detected. MTT viability assay and microscopic analysis showed that dGMPSe was toxic to HeLa cancer cells, and this cytotoxicity was due to the release of H2Se. The release of H2Se or H2S in the living cells after administration of dGMPSe and/or dGMPS, both without carrier and by electroporation, was observed using a fluorescence assay, as previously for NMPS. In conclusion, our comparative experiments with dGMPSe and dGMPS indicate that the HINT1 enzyme is capable of converting (d)NMPSe to (d)NMP and H2Se, both in vitro and intracellularly. Since the anticancer activity of various selenium compounds depends on the formation of hydrogen selenide, the actual inducer of cell death, we propose that selenium-containing nucleotides represent another option as novel compounds with anticancer therapeutic potential.


Assuntos
Espaço Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleosídeos/metabolismo , Fosfatos/metabolismo , Compostos de Selênio/metabolismo , Neoplasias do Colo do Útero/metabolismo , Biocatálise , Morte Celular , Eletroporação , Feminino , Fluorescência , Células HeLa , Humanos , Hidrólise , Concentração Inibidora 50 , Cinética , Proteínas Mitocondriais/metabolismo , Nucleosídeos/síntese química , Nucleosídeos/química , Fosfatos/síntese química , Fosfatos/química , Análise de Regressão , Compostos de Selênio/síntese química , Compostos de Selênio/química , Especificidade por Substrato , Fatores de Tempo
4.
Biochim Biophys Acta Gen Subj ; 1865(11): 129968, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329705

RESUMO

BACKGROUND: Human HINT2 is an important mitochondrial enzyme involved in many processes such as apoptosis and bioenergetics, but its endogenous substrates and the three-dimensional structure of the full-length protein have not been identified yet. METHODS: An HPLC assay was used to test the hydrolytic activity of HINT2 against various adenosine, guanosine, and 2'-deoxyguanosine derivatives containing phosphate bonds of different types and different leaving groups. Data on binding affinity were obtained by microscale thermophoresis (MST). Crystal structures of HINT2, in its apo form and with a dGMP ligand, were resolved to atomic resolution. RESULTS: HINT2 substrate specificity was similar to that of HINT1, but with the major exception of remarkable discrimination against substrates lacking the 2'-hydroxyl group. The biochemical results were consistent with binding affinity measurements. They showed a similar binding strength of AMP and GMP to HINT2, and much weaker binding of dGMP, in contrast to HINT1. A non-hydrolyzable analog of Ap4A (JB419) interacted with both proteins with similar Kd and Ap4A is the signaling molecule that can interact with hHINT1 and regulate the activity of some transcription factors. CONCLUSIONS: Several forms of homo- and heterodimers of different lengths of N-terminally truncated polypeptides resulting from degradation of the full-length protein were described. Ser144 in HINT2 appeared to be functionally equivalent to Ser107 in HINT1 by supporting the protonation of the leaving group in the hydrolytic mechanism of HINT2. SIGNIFICANCE: Our results should be considered in future studies on the natural function of HINT2 and its role in nucleotide prodrug processing.


Assuntos
Fosfatos de Dinucleosídeos/química , Proteínas Mitocondriais/química , Fosfatos de Dinucleosídeos/metabolismo , Humanos , Ligantes , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...